

実施会場・研究室見学案内図

研究室見学は実施会場(IB電子情報館)で会場案内と当日受付を行います

バイオロボティクス研究グループ (新井研)

航空・機械実験棟 3階311室

一回最大15人 事前予約不要

10:00~

30分単位で15:30まで (12:00~13:00を除く)

知能ロボット学研究グループ (長谷川研)

航空・機械実験棟 2階215室

一回最大10人 事前予約不要

11:00~11:30 $12:00 \sim 12:30$

 $13:00 \sim 13:30$

 $14:00 \sim 14:30$

橋梁長寿命化推進室 (中村光) ニューブリッジ(N2U-BRIDGE)

一回最大20人

事前予約不要

13:00~13:40 14:00~14:40

触媒合成学研究室 (石原研) 工学部1号館 7階 719号室

一回最大20人 事前予約必要

(当日受付あり No.1ブース)

15:00 ~ 15:30 16:00~16:30

航空・機械

実験棟

赤崎記念研究館

工学部 2 号館

ビジネス ボラトリ

工学部1号館

研究室見学会場

北部厚生会館

工学部 7号館

生産プロセス工学研究グループ (梅原研)

工学部7号館 A棟106室

工学部5号館

低温プラズマ科学

NIC 館

ES 総合館

一回最大12人 事前予約不要

11:00~11:30 11:30 ~ 12:00

13:00 ~ 13:30 $13:30 \sim 14:00$

電力機器・エネルギー伝送工学研 究グループ(早川研)

工学部7号館 A棟 高電圧実験室

一回最大20人当日受付(IB館)

 $13:00 \sim 13:30$

 $13:30 \sim 14:00$ $14:00 \sim 14:30$

 $14:30 \sim 15:00$

画像情報学研究グループ(藤井研) IB電子情報館 北棟 8階東側 一同最大30人当日受付(IB館)

 $10:00 \sim 10:45$

11:00~11:45

13:00 ~ 13:45

 $14:00 \sim 14:45$

宇宙電磁観測研究グループ (塩川研) IB電子情報館

北棟 7階717輪講室

最大20人 事前予約不要

 $14:30 \sim 15:30$

機能集積デバイス研究室

北棟 1階105室 事前予約必要

出入口 (宮﨑研) IB電子情報館

地下鉄3番

(東研) 工学部2号館 2階222室

動的システム制御研究グループ

実施会場

IB電子情報館

一回最大6人 事前予約不要

 $12:30 \sim 14:10$

ブース展示・市民公開セミナー会場 研究室見学受付・案内場所

☆#: 名古屋大学 IB電子情報館1階

地下鉄名城線「名古屋大学」駅3番出口よりすぐ

マイクロ・ナノプロセス工学研究 グループ(秦研)

工学部3号館 2階212室 一回最大10人

事前予約不要

 $10:00\sim17:00$ 随時見学可能

材料強度・評価学研究グループ (巨研)

工学部 3 号館

工学部2号館 2階255室

一同最大10人 事前予約不要

10:00 ~ 10:30 11:00 ~ 11:30 13:00 ~ 13:30

 $14:00 \sim 14:30$

鏡ケ池

随時見学可能

テクノ・フェア名大2019 研究室・施設見学 タイムテーブル

専攻		は字 タイムナーブル												受付・			
学科	研究グループ名 出展代表者	見学施設名	見学内容	1回	見学時間 タイムテーブル 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30											92-t>t	
311	MIXI VIX E				10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30												
電子工学専攻 電気電子情報工学科	機能集積デバイス研		当研究室では、その半導体技術、特にシリコンナノテクノロジーの更なる高度化に貢献するために、材料科学からプロセス インテグレーション・デバイス化技術にわたる横断的な研究を推進しています。 当日は、実際に活用している最先端シリコンプロセス装置の見学とともに、ナノ構造評価のデモンストレーションを行いま	10								40.10			40 1 50	1	
	究室	北棟								13:00 ~ 13:20 13:30 ~ 1					13:50	: 50	事前予約
	宮﨑誠一教授	1階105室	इ.														
2 電気工学専攻 電気電子情報工学科	宇宙電磁観測研究グループ塩川和夫教授		世界一の多地点高感度カメラや大型レーダーを使ってオーロラや地球周辺の宇宙空間を観測し、超高層大気と呼ばれる 「大気のてっぺん」から宇宙空間に続いていく高さの環境を研究しています。この高さは、オーロラが光っていると同時 でに、国際宇宙ステーションや人工衛星が飛んでいるところでもあります。私たちの研究は、まだまだ未知のことが多いこの領域の環境を明らかにするとともに、人工衛星の安全な運用にも役立っています。今回の見学では、講義室でスライド	20													
													14:30 ~ 15:30		7	予約不要	
														14 · 30 · 13 · 30	(IB館で 案内)		
	-11111/13/2	(7 %)	を使って、随時質問も受け付けながら、私たちの研究を紹介していきます。														<i>x</i> , <i>y</i>
3 情報・通信工学専攻 電気電子情報工学科	画像情報学研究グ ループ 藤井俊彰教授	IB電子情報館 北棟 8階東側	光線空間法とは、空間を伝搬する光線を単位として情報を高密度に記述することで、究極の3次元映像を実現できる枠組みです。例えば、光線空間を用いれば、ただ立体的に見えるだけではなく、見る角度を変えると物体の側面が見えるような、本当の意味での3次元映像を表示することも可能になります。3次元映像の撮影、処理、表示に関わる最新の技術を紹介します。	30													
					10:00 ~ 10:45 11:00 ~ 11:45 13:00 ~ 13:45 14:00 ~								7	当日受付			
																_	(IB館)
			9.														
4 電子工学専攻 電気電子情報工学科	電力機器・エネル ギー伝送工学研究グ ループ 早川直樹教授	工学部7号館	「感じてみよう!雷と極低温の世界」 雷が近くで落ちるとすさまじい音と光が出ますが,これを実験装置で再現できます。ピカチュウでおなじみの10万ポルトの 敬電の音と光を体験してみましょう。また,リニア新幹線は超電導を使用しますが,このためには液体窒素で-196℃まで冷 やす必要があります。このような極低温の世界を覗いてみましょう。	20													
		A棟 高電圧実験室								13:	$00 \sim 1$	13:30	13:3	$30 \sim 1$	4:00		当日受付 (IB館)
									L								(IDAE)
5 <mark>ペイクロ・ナノ機械理工学専攻 機械・航空宇宙工学科</mark>	生産プロセス工学研究グループ 梅原徳次教授	工学部7号館 A棟106室	機能表面の創製や評価技術の開発を通じてグリーンイノベーションを目指しています。摩擦や摩耗を低減させる新材料の 開発は燃費改善や機械の長寿命化に有効です。炭素系硬質薄膜の新しい成膜技術の開発を通じて低摩擦・高耐摩耗性を有 する新材料の開発を目指しています。炭素系硬質薄膜の摩擦・摩耗メカニズムを解明するために様々な分析手法を駆使し て機能性表面の評価技術を開発してきました。【反射分光, X線光電子分光, オージェ電子分光, ラマン分光, 赤外線分光 など】の分析手法を用いています。	12						Г				7			予約不要
							L1 : 00	~ 11 :	30	13:00 ~ 13:30						(IB館で	
														_			案内)
																	事前予約
6 有機・高分子化学専攻 化学生命工学科	触媒合成学研究室 石原一彰教授	工学部1号館 7階 719号室	実験研究室(実験実施中の風景)・測定室(NMR、IR、GC、HPLC、LC-MS、GPC、,X線回折装置、グローブボックス、旋 光計など)を見学できます。	20											15 : 00 -	.15:20	
														-	15 . 00 ^	15:30	当日受付
																	(IB館)
7 代介の・ナノ機械理工学専攻機械・航空宇宙工学科	バイオロボティクス 研究グループ 新井史人教授	航空・機械実 験棟 3階311室	MEMSとナノテクノロジーを基盤としたロボティクス・メカトロニクスとバイオメティカル応用に関する研究を行なっています。磁気駆動マイクロアクチュエータ、バイオアクチュエータ、マイクロ流体チップ、バイオニックヒューマノイド、医療用マイクロデバイス、水晶振動子を用いたワイドレンジ小型カセンサ、オンチップロボットによるマイクロ流体チップ内での高速細胞操作・計測・加工、希少細胞のダメージレス高速分離・分注などについて紹介します。また、MEMS技術や微細加工(フォトリソグラフィ、ウェット・ドライエッチング)、マイクロ流体チップの製作、システム構築について	15													予約不要
					10	: 00 ∼	~ 30分単位			13:00 ~ 30分単位					JANNE (IB館で		
																<u> </u>	案内)
			技術的な相談に応じます。														
8 代加・ナノ機械理工学専攻機械・航空宇宙工学科	知能ロボット学研究 グループ 長谷川泰久教授	航空・機械実 験棟 2階215室	「人の意思を瞬時に推定し適切な支援を行う人支援ロボット」や「離れた場所でロボットを操作するテレオペレーションシステム」、「人の目では捉えられない現象を捉えるビジョン計測システム」等のデモンストレーションとそれらの基盤技術の説明を行います。	10									_	予約不要			
						11:00	~ 11 :	30 12:00 ~ 12:30 13:00 ~ 13:3					0 14:00~		(IB館で		
																	案内)
												\blacksquare					
9 土木工学専攻 環境土木・建築学科	橋梁長寿命化推進室		経年劣化橋梁を集めた実大橋梁モデルの概要(インフラの劣化状況)と、インフラの維持管理の際に必要となる劣化評価技術や非破壊診断技術を紹介します。	20											Щ		予約不要
	中村光教授	ニューブリッジ								13	3:00~13:40 14			00~14:40			(IB館で 案内)
																	柔的/
	マイクロ・ナノプロ		秦研究室では、MEMS (Micro Electro Mechanical Systems: 微小電子機械システム)など微小な集積機械デバイスを実現														
マイクロ・ナノ機械理工学専攻 機械・航空宇宙工学科	セス工学研究グルー	工学部 3 号館	するために,新しい微細加工法やMEMS用新材料開発も含めた横断的な研究を行っています。 1。MEMS・マイクロセンサ	10	10:00 ~ 17:00 随時見学可能										予約不要 (IB館で		
	プ					1 11 11 11 11 11									案内)		
	秦誠一教授		2。 コンピナトリアル法によるMEMS用機能性材料・エネルギー材料探索														
7イケル・ナノ機械理工学専攻 機械・航空宇宙工学科	材料強度・評価学研 究グループ 巨陽教授	工学部 2 号館 2階255室	金属表面上の疲労き裂の修復技術の開発:疲労き裂への電流印加により、き裂の修復を図り、そのメカニズム解明を目指している。マイクロ波原子間力顕微鏡の開発:導電率、誘電率、透磁率等の電気的特性をサブミクロンオーダーで検出する装置の開発を目指しています。 ナノワイヤ面ファスナーの創製・ナノワイヤは集積化が進む電子デバイスなどへの応用が期待されている。本研究は機能性ナノワイヤ面ファスナーの創製を目指しています。	10]			予約不要
					10:00~10:30 13:00~13:30								ア約不安 (IB館で				
						<u> </u>										案内)	
																	\vdash
機械システム工学専攻 12 機械・航空宇宙工学科	動的システム制御研		ダイナミクスをデザインする基盤である,数理モデリング・制御理論,また関連する技術として機械学習に関する研究を 行っています。フィードバック制御の基本的なアイデアの説明と、制御理論の自動車等への応用を紹介します。また,機械 学習の手法を応用しデータ駆動でロボットの運動をデザインする研究や,マルチエージェントシステムに総体として望み通	6									7				予約不要
	究グループ									12 :	12:30 ~ 14:10						(IB館で
	東俊一教授		りの挙動をさせるための制御の研究について紹介します。										_				案内)
						=	<u> </u>	<u>: </u>	<u>: </u>								